S	Year 11 Mathematics Methods AEMAM Term 1 2023					
	Test 1 C	ounting and Probab	oility			
SHENTON C Ο L L Ε G Ε	Calculator Free	e Formula Shee	t Allowed			
Student Name:				-		
Teacher Chesh (circle):	nire Coveney	McKenna McRae	Moore	Munro		
Time Allowed: 25 m	inutes	Calculator Free:		/27		
Attempt all questions. All necessary working and Marks may not be awarde	d reasoning must be ed for untidy or poor	shown for full marks . Ay arranged work.				
Question 1.				[3 marks]		
(a) Evaluate:						
(i) $\frac{11!}{9!}$	(ii) ⁷ C ₃	(iii) $\binom{n}{k}$ ÷	$\binom{n}{n-k}$			

Question 2.

[2, 1 = 3 marks]

- (a) Two events A and B are such that $A \cap B = \emptyset$.
 - (i) Draw a Venn diagram to show the relationship between A and B and shade the region representing $A \cup B$.

(ii) Describe the relationship between the events A and B.

(a) Shade the region of the Venn diagram below that represents $C \cap (\overline{A \cup B})$.

(b) Use set notation to describe the shaded region in the Venn diagram below.

(c) Determine the value of x in the Venn diagram below

[2, 1, 3, 2 = 8 marks]

Question 4.

Events A and B are such that P(A) = 0.6, P(B) = 0.5 and $P(A' \cap B) = 0.4$

	Α	A'	TOTAL
В			
B'			
TOTAL			

(a) Complete a two-way table based on the information above.

(b) Explain why the events A' and B' must be mutually exclusive.

(c) Determine

(i) $P(\overline{A} \cup \overline{B})$

(ii) $P((\overline{A \cap B})|A)$

(d) Determine if the events A and B are independent, supporting your answer with appropriate calculations.

Question 5.

Let U denote the group of all students who visited Europe over the school holidays. If:

- *I* represents the set of students that visited Italy,
- *E* represents the set of students that visited England
- G represents the set of students that visited Germany

describe in words, which students are represented by the following sets.

a) $I \cup E \cup G$

b) $\overline{I \cap E \cap G}$

c) $(E \cup G) \cap I'$

Question 6.

[1, 2, 2 = 5 marks]

- (a) State the five terms in row 4 of Pascal's triangle.
- (b) Expand $(a b)^4$

(c) Determine the coefficient of x^4 in the expansion of $\left(4 - \frac{x}{2}\right)^7$

Year 11 Mathematics Methods AEMAM Term 1 2023 Test 1 Counting and Probability

Calculator Assumed

Formula Sheet, ClassPad and Calculator Allowed

Student Name:							
Teacher:	Cheshire	Coveney	McKenna	McRae	Moore	Munro	
Time Allowed: 20 minutes		Calculator Assumed:		/22			

Attempt all questions.

All necessary working and reasoning must be shown for **full marks**. Marks may not be awarded for untidy or poorly arranged work.

Question 8.

[1, 2, 1, 3 = 7 marks]

Shen-Car insurance company collected data on two different driver age groups who had made an insurance claim over a 1-year period. Some of the data is shown in the table below.

AGE OF	17-25	26-40	TOTAL
DRIVER:			
CLAIM	220		370
NO CLAIM		450	
TOTAL			1000

(a) Complete the table

- (b) How many drivers did not make a claim?
- (c) What is the probability a randomly selected driver:
 - (i) Is aged 26-40 and didn't make a claim.
 - (ii) Is aged 17-25 or made a claim.
- (d) Determine the proportion of drivers aged 17-25 who made a claim during the year.

Question 9.

[1, 1, 1, 3, 2, 2 = 10 marks]

A committee of 7 people is being selected from senior members at a local sports club consisting of 7 frisbee players, 8 roller derby players and 5 lacrosse players.

- (a) In how many ways can the 7 people be selected if:
 - (i) There are no restrictions
 - (ii) Only roller derby players are selected
 - (iii) No roller derby players are selected
 - (iv) At least 2 representatives from each sport are selected.

- (b) Two roller derby players, Ruby Bruiseday and Drew Bash 'emore find out that exactly 4 roller derby players have been selected for the committee. Calculate the probability:
 - (i) Ruby has been selected

(ii) Only one of them has been selected

Question 10.

Classified documents at the nation's leading intelligence agency *SP135* are protected by four different anti-hack programs (referred to as A, B, and C for security reasons). Each program has the following chance of being hacked:

$$P(A) = 0.3 P(B) = 0.15 P(C) = 0.1$$

Determine the probability that during a cyber-attack:

(a) All programs will be hacked.

(b) At least one of the programs will be hacked.

(c) Exactly two of the programs will be hacked.